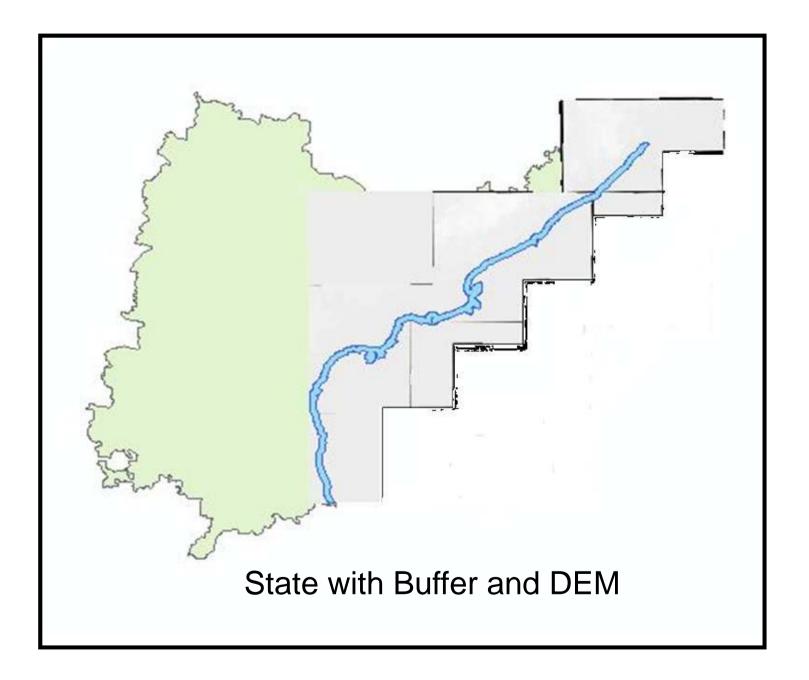
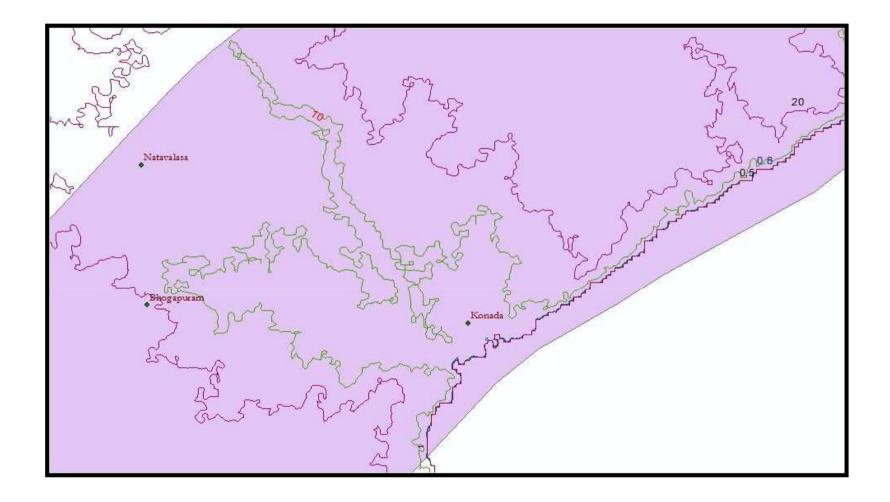
STUDY OF PROBABLE GLOBAL WARMING & TSUNAMI IMPACT

ALONG ANDHRA PRADESH COASTLINE

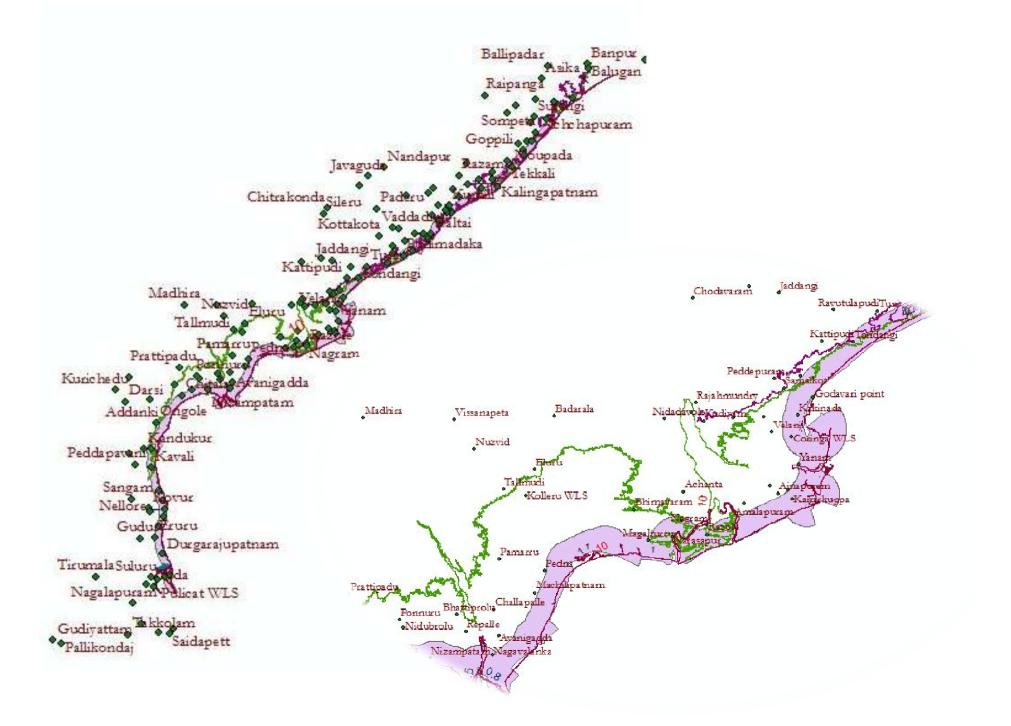

A.KRISHNA MOHAN, M.Tech (2nd year) Prof Dr. K.S.RAJAN IIIT Hyderabad

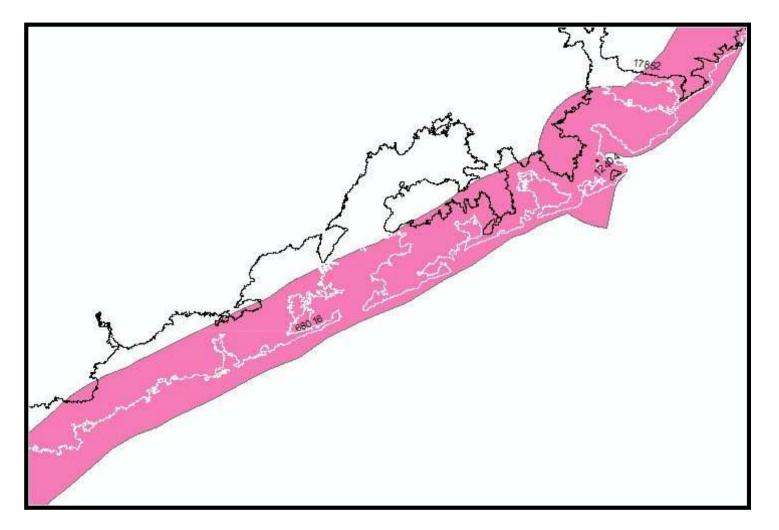
INTRODUCTION

- Coastal resources are vulnerable to natural hazards
 - ✤Global warming
 - Tsunami
- It has become imperative to simulate and study the effects of the phenomena.
- The study is aimed at
 - identifying the data requirements for simulation
 - preparing the quick and simple reports for end-use.


Data Inputs

- Elevation data: SRTM data for the entire AP coast (External Data)
- Vulnerable area: 10 km buffer along the entire coast
- Shape files of following features:
 - State Outline (Polygon)
 - Place Names (Point Data)
- The official population data according to Census-2011 for all the coastal districts (External Data)




Processing

- The contours of 0.5, 0.8 & 1 m (for global warming) are generated.
- The same process is repeated for 10 & 30m contours (for tsunami) .
- The proximity analysis is done to locate the contours near to the coast for the probable submergence areas.

Contours of Global Warming (0.5, 0.8 & 1m)

Contours - Tsunami Impact Analysis (10 & 30m)

Analysis & Outputs

- The area falling under the identified contours are calculated.
- The area under each contour is aggregated to arrive at the probable number of people to be displaced/submerged.
- The probable affected population is approximately
 3% of the entire coastal population.
- Use of open source tools.

S.No.	Contour Height (m)	Area (sq. km.)	Polygons	Study Area Population Density
1	0.50	205	309	166800
2	0.80	221	453	154541
3	1.00	220	487	155117
4	10.00	436	1658	78407
5	30.00	1083	598	476458
			Total Affected Population	1,031,323

FUTURE SCOPE

Producing Commensurate Data DEM (1/3rd arc-second posting) Sub-meter HIRES data for detail mapping The complete road network mapping Emergency facilities Well within a possible range of buffer Integrating all the collateral data. Simulation methodologies.

SIMULATION MODELING

- Flood fill is also called seed fill.
 The flood fill algorithm takes three parameters: a start node, a target color, and a replacement color.
- Depending on whether we consider nodes touching at the corners connected or not, we have Eight-way and Four-way, respectively.

MOST MODEL

- The MOST (Method of Splitting Tsunami) model, developed by Titov of PMEL and Synolakis of University of Southern California.
- MOST model has three phases- Deformation, Propagation and Inundation
 - Deformation- The initial conditions for a tsunami are considered by simulating ocean floor changes due to a seismic event.
 - Propagation this phase propagates the generated tsunami across deep ocean using Nonlinear Shallow Wave (NSW) equations.
 - An Inundation Phase simulates the shallow ocean behavior of a tsunami by extending the NSW calculations using a multi-grid "runup" algorithm to predict coastal flooding and inundation
- Three DEM grids used by the Inundation Phase.

MOST MODEL(contd.)

- Problems of DEM data for particularly Deformation Phase and Propagation Phase simulation modeling open-ocean tsunami propagation
- Correction- MOST tool bath_corr to smooth the DEM grids.
- DEM grids must be analyzed for consistency prior to using the model.

FORECAST MODEL

- Main objective -Wave arrival time, wave height and inundation area immediately after a tsunami event.
- Models are run in real time while a tsunami is propagating in the open ocean, consequently they are designed to perform under very stringent time limitations.
- Set of Databases-When a tsunami event occurs, an initial source is selected from the pre-computed database.

BIBLIOGRAPHY

- Integration of Tsunami Analysis Tools Into a GIS Workspace Research, Modeling & Hazard Mitigation Efforts within NOAA's Center for Tsunami Research By Nazila Merati, Christopher Chamberlin, Christopher Moore, Vasily Titov, and Tiffany C. Vance
- GIS Analysis of Global Impacts from Sea Level Rise By Xingong Li, Rex J. Rowley, John C. Kostelnick, David Braaten, Joshua Meisel, and Kalonie Hulbutta.
- Application of Remote Sensing for Tsunami Disaster By Anawat Suppasri, Shunichi Koshimura, Masashi Matsuoka, & Hideomi Gokon and Daroonwan Kamthonkiat.
- The Impacts of Sea-Level Rise on the California Coast By Matthew Heberger, Heather Cooley, Pablo Herrera, Peter H. Gleick & Eli Moore.
- ✤ <u>GLCF Shuttle Radar Topography Mission.htm</u> for SRTM downloads.

